Development of a Pent-Roof MD Spark-Ignited Natural Gas Engine in an Optimized Hybrid Vehicle System:

SOUTHWEST RESEARCH INSTITUTE®

Mid Project Review, Jan 31, 2023 **Chris Chadwell**

POWERTRAIN ENGINEERING

swri.org

Agenda

- Executive Summary
- Team
- Task Updates
 - Engine Development
 - Hybrid System Development
 - Vehicle Integration
- Remaining Milestones

POWERTRAIN ENGINEERING

SwRI Project Team

Project Manager

Scott Sjovall, SwRI Program Manager Email – <u>scott.sjovall@swri.org</u> / Phone (210) 522-5065

Technical Leads

- Design and Integration Lead
 Dustin Kramer, Principal Engineer
 Email <u>dustin.kramer@swri.org</u> / Phone (210) 522-3843
- Engine Development Lead
 Robert Mitchell, SwRI Research Engineer
 Email robert.mitchel@swri.org / Phone (210) 522-4651
- Hybrid System Development Lead
 Kevin Jones, SwRI Lead Engineer
 Email <u>kevin.jones@swri.org</u> / Phone (210) 522-6070

SwRI Contracts

Maricela Miranda Cont Marie Phon

SwRI Project Oversight

Terry Alger	Execu
	Susta
Chris Hennessy	Direc
	Powe
Chris Chadwell	Direc
	Syste
	Mobi
Michael Kocsis	Mana
	and E

POWERTRAIN ENGINEERING

Contract Specialist <u>Maricela.miranda@swri.org</u> Phone (210) 522-5611

- utive Director
- ainable Energy and Mobility
- ctor, Design and Development
- ertrain Engineering
- ctor, Automotive Propulsion
- ems, Sustainable Energy and
- ility
- ager, Engine Certification
- Emissions Development

Executive Summary

Mission

Improve NG Engine and Vehicle Emissions and Efficiency – The objective is to reach an efficiency level similar to that of conventionally fueled vehicles and reduce emissions to near-zero levels with improvements to the natural gas engine as part of a hybrid powertrain, capable of being commercially saleable into a medium- or heavy-duty vehicle

Key program deliverables

- Medium Duty Natural Gas Hybrid Demonstration Vehicle
- 25% reduction in GHG compared to diesel baseline
- 0.02 g/bhp-hr NO_x

POWERTRAIN ENGINEERING

Engine Development

©SOUTHWEST RESEARCH INSTITUTE

POWERTRAIN ENGINEERING

swri.org

Single Cylinder Engine Research

To determine if the requirements of the project could be met, a single-cylinder research engine based on the Isuzu 4HK diesel platform was configured with a bespoke high-tumble, pent-roof cylinder head and converted to run on natural gas.

Key features included on SCE to support test program

- High Tumble Pent Roof Cylinder Head
- Variable valve timing
- Fumigated injection and port injection
- Cooled EGR

⁻ NHQ-9-82305-07

SwRI Project # 25912 / NREL Subcon

c)	1300	
	115	
	125	
atio	12.2:1	
	40	
	100	
'C)	100	
	Electric SC	
	Manual, match to Intake	
ontrol	Intake & Exhaust VVT	
	High-energy, single strike	

POWERTRAIN ENGINEERING

SCE Test Results

The results indicated that the Gen 2 combustion system would meet the vehicle demonstration requirements

The Gen 2 combustion system reduced the tumble levels with increased valve sizes relative to the Gen 1 system

These improvements included:

- Reduction in pumping work of up to 0.1 bar PMEP
- Lower lumped efficiency losses
- Up to 10% higher EGR tolerance

Analysis results were also used to refine modeling efforts for the multi cylinder engine program

	L.	
VELOCIT	Y CONTO	OUR
2650	RPM	
	L.	
VELOCITY	CONTO	UR
26501	8PM	

2650RPM

wRI Project # 25912 / NREL Subcontract number NHQ-9-82305-07

swri.org

POWERTRAIN ENGINEERING

VELOCITY CONTOUR AT SPARK TIMING

UR AT INTAKE VALVE CLOSING

OUR AT MAXIMUM VALVE LIFT

MCE Build & Test

- MCE build based on an Isuzu 4HK1 short block assembly
- Component updates based on SCE effort
 - I 2:1 compression ratio pistons with custom designed connecting rods
 - New high tumble pent roof, four valve cylinder head
 - Dual cam carrier assembly
 - New intake and exhaust manifolds
 - Woodward ECU (OH6), EGR and fuel system
- Initial performance validation results
 - Target engine torque curve achieved (260/660)
 - Peak thermal efficiency (BTE) of 40% achieved

swri.org

POWERTRAIN ENGINEERING

MCE - Fully Assembled Engine

POWERTRAIN ENGINEERING

Catalyst System

- A BMW X7 xDrive 40i production catalyst was utilized
 - Time and cost constraints precluded a custom catalyst for this demonstrator
 - The BMW unit included close coupled (CCC) and an under-floor catalyst (UFC) blocks
- An additional custom UFC was utilized downstream of the BMW catalyst to obtain capacity needed for this application
- Relatively inexpensive gasoline catalyst system

POWERTRAIN ENGINEERING

10

Steady State Calibration for Emissions

- The Woodward EGR module is designed to meet the 0.02 g/bhp-h NO_x emissions targets by measuring the airflow in the same location as the fuel is injected so there is no lag in fueling
 - This mitigates deviations from stoichiometric during transients
- The pressure drop across either the throttle or nozzle is used to calculate air flow
- At high torque low speeds where the pressure drop across the nozzle is too low for accurate estimation, the model reverts to a speed density calculation
- The nozzle size was selected to minimize the use of the speed density model but also minimize the overall pumping losses

POWERTRAIN ENGINEERING

Transient Cycle Performance

- The engine was tested over the Diesel HD FTP cycle
 - The engine was able to follow the cycle
- The target torque at idle is 0 Nm
 - The actual engine idles at a 20 Nm offset to represent auxiliaries
 - The engine was calibrated without fuel shut-off
 - Additional calibration effort would enable this and provide more fuel savings

POWERTRAIN ENGINEERING

swri.org

----Engine Torque 1 | N-m | ---- Target torque

Engine Speed | RPM | — Target speed

Transient Control Strategies

- The ECU was calibrated to use cold start strategies including:
 - High idle at 1200 rpm
 - Phi offset of 0.005 rich
 - Spark retard
- Equivalence ratio control during cycle was held tight by the EGR module
 - Fuel is injected at the same location as the air flow is measured

POWERTRAIN ENGINEERING

13

Transient Cycle Emissions Performance

- NO_x was able to meet 0.02 g/bhp-h
- CO₂ meets targets out to 2027 including CH₄ trading
 - 34g of CO₂ for each gram of CH₄ above the limit
- All pollutant emissions meet the current regulations
- Ammonia and PM were not measured but are expected to meet regulations

łC	CO ₂	CH₄
2	517	0.1
4	600 (545 in 2021, 535 in 2027)	0.1

		■ NOx
osite	regulation	
FRAI		ERING

14

GEM Transient Cycles

- GEM uses three drive cycles
 - ARB transient
 - GEM cruise cycle at 55 mph and 65 mph with varying road grade
 - These three cycles add to a 100% weight that is the non-idle cycle weighting
 - There are 8 configurations of drive axle and rolling resistance
 - Start stop reduces drive idle emissions by 90%
- Vocational has three subcategories
 - Regional is weighted for more cruise driving
 - Urban is weighted for transient driving

Regulatory Subcategory	
Duty Cycle	
Total weight (kg)	
Aerodynamic Drag Area - CdA (m ²)	
Payload (tons)	
Electrical Accessory Power (W)	
Mechanical Accessory Power (W)	
ARB Transient Drive Cycle Weighting	
GEM 55 mph Drive Cycle Weighting	
GEM 65 mph Drive Cycle Weighting	
Parked Idle Cycle Weighting	
Drive Idle Cycle Weighting	
Non-Idle Cycle Weighting	

POWERTRAIN ENGINEERING

15

GHG Reduction Prediction

- Used GEM inputs for the baseline, provided by Isuzu
- Used a combination of GEM and GT-Drive for the hybrid versions
- With just the preliminary level of hybrid controls the NG hybrid is close to achieving the 25% GHG emissions reduction target
 - The hybrid was only used to show an improvement on the transient cycle and idle cycle ____
 - Hybrid controls used a charge sustain mode only
 - Hybrid showed 15% improvement over HHDDT transient cycle

Hybrid System Development

©SOUTHWEST RESEARCH INSTITUTE

POWERTRAIN ENGINEERING

17

Drive Cycle Performance Modeling

- The Isuzu 4H-Fseries-VF76 Class 6 medium-duty truck was modeled in GT-DRIVE
- The same hybrid vehicle model captures P2 and P4 hybrid architectures using clutch arrangements to select either configuration

GT-DRIVE VEHICLE AND POWERTRAIN VKA MODEL

POWERTRAIN ENGINEERING

swri.org

Drive Cycle Performance PHEV Results

- Best PHEV architecture:
 - P2
 - 100 kW e-motor
 - 40kWh battery
- PHEV Fuel economy improvements
 - Standard cycles: 24% to 48%
 - Isuzu-City cycle: 10%
 - Isuzu-Highway cycle: less than 1%

POWERTRAIN ENGINEERING

19

Operating Modes

POWERTRAIN ENGINEERING

swri.org

Hybrid Control Development

- Control strategies converted from GT-Drive to Simulink and refined
- Co-simulation of Simulink strategies with GT plant model
- Benefits:
 - More detailed control strategies in Simulink
 - Allows auto-coding of Simulink strategies straight to vehicle controller
 - Faster implementation and iteration when testing in vehicle

swri.org

POWERTRAIN ENGINEERING

SIL Co-sim Verification & Calibration

Starting at 25% SOC

POWERTRAIN ENGINEERING

22

Vehicle Integration

©SOUTHWEST RESEARCH INSTITUTE

POWERTRAIN ENGINEERING

23

Task 5.2 – Vehicle Integration

Status:

- Hybrid hardware integration complete -
- NG Engine and fuel system integration complete
- Wiring complete

POWERTRAIN ENGINEERING

CNG / Hybrid Vehicle Integration

- Isolated hybrid system shown below (PN: 25912-900-000)
 - PN: 25912-950-100: Traction Motor Assembly
 - PN: 25912-950-200: Battery / Electrical
 - PN: 25912-950-300: CNG Fuel Tank

Motor Cooler

Vehicle and Hybrid System Overview

The traction motor, battery / electrical and CNG systems have been integrated into the Isuzu F series vehicle chassis

CNG Fuel Tank

Traction Motor Integration

- Primary components:
 - Disconnect clutch assembly
 - South Bend 1947-OFE manual transmission clutch and Schaeffler CAN controlled electrohydraulic actuator
 - Custom flywheel housing extension
 - Borg Warner HVH410-075-DOM traction motor —
 - Custom bellhousing extension and flex-plate adapter

Bellhousing extension housing

Disconnect clutch assembly and housing

Electric motor

POWERTRAIN ENGINEERING

Battery / Electrical Integration

- Primary components:
 - I. Leclanche INT-39HV Battery Pack
 - 2. Cascadia PM250DZ Inverter
 - 3. Sevcon Gen 5 HV DC-DC Converter
 - 4. EDN EVOIIKL Charger
 - 5. HV Power Distribution unit

Inverter

HV Power

POWERTRAIN ENGINEERING

CNG Fuel System and Engine

- Primary components:
 - Agility CNG fuel system
 - CNG Fueled Engine

POWERTRAIN ENGINEERING

Next Steps

Powertrain evaluation, vehicle demonstration and reporting tasks

- Vehicle performance testing
 - Hybrid control and powertrain system calibration and testing on the SwRI heavy-duty chassis dyno
- Drive cycle and On-road testing
 - The truck will be operated on the SwRI chassis dyno and test track to validate drive cycle emissions performance and on-road drivability
- Final project reporting and vehicle demonstration

POWERTRAIN ENGINEERING

swri.org